Abstract

We report non-resonant inelastic X-ray scattering experiments of several gaseous samples in the inner-shell excitation energy range. The experimental near-edge spectra from all the K-edges of N(2), N(2)O, and CO(2) including the momentum transfer dependence are presented. The results are analyzed using density functional theory calculations that accurately reproduce the experimental spectral features. We observe vibrational effects in the measured spectrum and in the calculations the atomic motion is modeled using the Franck-Condon approximation and the linear coupling model. Our findings show that vibrational effects cannot be neglected in the analysis of high resolution inelastic X-ray scattering spectroscopy. The results also support the validity of the transition potential approximation for calculating core excited state potential energy surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.