Abstract

Current calculations of the inelastic thermal neutron scattering cross sections of graphite are based on representing the material using ideal single crystal models. However, the density of reactor-grade graphite is usually in the range of 1.5 g/cm3 to approximately 1.8 g/cm3, while ideal graphite is characterized by a density of nearly 2.25 g/cm3. This difference in density is manifested as a significant fraction of porosity in the structure of reactor-grade graphite. To account for the porosity effect on the cross sections, classical molecular dynamics (MD) techniques were employed to simulate graphite structures with porosity concentrations of 10% and 30%, which are taken to be representative of reactor-grade graphite. The phonon density of states for the porous systems were generated as the power spectrum of the MD velocity autocorrelation functions. The analysis revealed that for porous graphite the phonon density of states exhibit a rise in the lower frequency region that is relevant to neutron thermalization. Using the generated phonon density of states, the inelastic thermal neutron scattering cross sections were calculated using the NJOY code system. While marked discrepancies exist between measurements and calculations based on ideal graphite models, favorable agreement is found between the calculations based on the porous graphite models and measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.