Abstract

The aim of this investigation is to study the effect of different imperfection shapes on the inelastic stability of liquid-filled conical tanks and to determine the critical imperfection shape that would lead to the minimum inelastic limit load. The study is carried out numerically using a self-developed shell element used to simulate a number of conical tanks having an imperfection shape in the form of Fourier series of equal coefficients. The Fourier analysis of the buckling modes indicates that the existence of axisymmetric imperfection will lead to the critical inelastic limit load for conical tanks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.