Abstract

Raman spectra of strontium borate binary glasses in the systemxSrO.(1-x)B2O3 forx=0.20, 0.25, 0.30, 0.35, 0.40, and 0.50 and ternary glasses in the system (SrCl2) y .[xSrO.(1−y−x)B2O3]1−y fory=0.10, 0.20, 0.30 and 0.40 andx=0.20 and 0.35, are reported. Raman spectra of the glasses show experimental evidence of glass network modifying nature of SrO in borate matrix. SrO causes a change of boron atom coordination number from 3 to 4 resulting in the complex structural groupings comprising of BO4 and BO3 units. Strontium cations are not easily accommodated in the glass structure and tend to break up the network at high concentration (x) of SrO, causing non-bridging oxygens. The effect of temperature variation of binary glasses has also been studied. The introduction of SrCl2 to the binary stronium borate glass causes a large change in intensity of low frequency Raman scattering whereas there is no change in the vibrational dynamics in the high frequency region. The temperature reduced Raman spectra represents true vibrational density of states. Martin-Brenig model developed for the low frequency region has been discussed to obtain the structural correlation range in the glass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call