Abstract

Inelastic light scattering experiments on low-energy intrasubband spin-density excitations (SDEs) are performed in (001)-grown modulation-doped GaAs-AlGaAs single quantum wells in in-plane external magnetic fields. The investigated samples possess balanced linear Bychkov-Rashba (α) and Dresselhaus (β) spin-orbit strengths in two different configurations, α=β and α=−β. Both configurations lead to an extreme anisotropy of the spin splitting of the conduction band, where the in-plane directions of maximum spin splitting for both configurations are perpendicular to each other. The spin splitting asymmetry can be directly detected via the SDE by breaking of the time-reversal symmetry due to transfer of a momentum q in the quantum-well plane. In addition, the application of an in-plane magnetic field Bext⊥q allows us to modulate the effective magnetic field. Via a numerical line-shape analysis of the experimental SDE spectra, we determine the relevant parameters of the samples. We find that the linear spin-orbit strength |α|=β is comparable for both samples, while the electron g factors are markedly different. Furthermore, we experimentally quantify the values of the maximum internal spin-orbit fields, which are as high as Bso∼18T for both samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.