Abstract

We have investigated the intrasubband spin-density excitation (SDE) in an asymmetrically doped GaAs-AlGaAs single quantum well with balanced Rashba and Dresselhaus spin-orbit interaction strengths by inelastic light scattering. For this unique symmetry, the combined spin-orbit field is either parallel or antiparallel to the [11¯0] in-plane direction of the quantum well for all wave vectors of the two-dimensional reciprocal space. In backscattering geometry, the SDE is formed by spin-flip intrasubband transitions of the spin-split subband. Via the splitting of the intrasubband SDE, we have directly detected the spin splitting of the conduction band due to the anisotropic spin-orbit field. As expected, the splitting is nonzero if a wave vector is transferred perpendicular to the direction of the spin-orbit field and close to zero for a parallel wave-vector transfer. The extracted values for the spin-orbit strength and for the wavelength of a persistent spin helix compare well with results of previous experiments of direct spatial mapping of the spin helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.