Abstract

There are concerns over the environmental risks posed by Cu-based fungicide use, and there is community and regulatory pressure on viticultural industries to restrict the use of Cu-based fungicides. This study assesses the relative environmental risks posed by Cu-based and alternative synthetic organic fungicide compounds used in Australian vineyards, giving particular consideration to their adverse effects on soil microbial activity and how risks vary across different viticultural regions. The study was guided by key steps in the ecological risk assessment framework to analyse the risks of Cu-based fungicides towards soil organisms and involved four key steps: (1) problem formulation, (2) analysis (characterise exposure and effects), (3) risk characterisation and (4) risk assessment. There is evidence of a build-up of Cu-based fungicide residues in Australian vineyard soils, although this has occurred over many years, thus allowing the availability of Cu in the soil to be attenuated over time due to aging processes. On the whole, it appears that Cu-based fungicide residues are currently unlikely to pose a significant risk to soil organisms in Australian vineyard soils. However, there are indicators that continued applications of Cu-based fungicides may well have implications on the use of impacted land for sustainable agricultural production. Further detailed studies are required to enable a more definitive characterisation of the risks posed by Cu-based fungicide residues, such as establishing a clearer link between the laboratory and agricultural settings, investigating effects on other indicators of microbial activity and biodiversity and understanding the resilience of soil microbes to additional stressors. The challenge for agricultural industries and governments, both in Australia and globally, is to formulate appropriate plans to reduce the risks associated with Cu-based fungicide use. Further research is required to consider the relative risks of a wide range of alternative fungicide compounds to ensure that they pose a lower environmental risk than the Cu-based fungicides they may replace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call