Abstract

To minimize the disposal of highly reactive spent sorbent from a fluidized bed combustor, a new method for reactivation has been developed. The method consists of grinding the spent ash in a rotary mill, hydrating the ash with an excess of water, and mixing the wet ground ash with dry solids to absorb the excess water. The mixing process eliminates the formation of a concrete-like product that normally results as wet fluidized bed combustor ash ages. Pilot-scale combustion trials proved to be successful, and the process was scaled up using a 35 MWt utility boiler at Purdue University. The test lasted for 3 days and resulted in net reduction of limestone sorbent use of 18%. The results generated in this work have been used to develop an economic evaluation for a 165 MWe circulating fluidized bed (CFB) boiler, which projects significant savings due to reduction of limestone supply and ash disposal costs. The evaluation also suggests that the process is cost competitive with other processes, albeit that those processes have not been demonstrated at industrial scale. Furthermore, it also has the potential to make a small net reduction in CO 2 emissions, due to reduced limestone usage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call