Abstract

AbstractForce touch sensors have received a great deal of attention for various applications owing to their versatile ability to detect touch and pressure. To demonstrate high‐performance force touch sensors, numerous studies have been performed, focusing on high sensitivity, transparency, and mechanical durability against bending. However, it is still challenging to apply force touch sensors in flexible applications, because their sensing performance is subject to change and degraded by induced mechanical stress and deformation when the device is bent. Here, a high‐performance and transparent nanoforce touch sensor with bending‐insensitivity is reported. This is achieved by developing a thin, flexible, and transparent hierarchical nanocomposite film, which is composed of a nanostructured plastic base, coplanar electrodes, and a dielectric polymer layer with silver nanoparticles. The fabrication process is simple that high manufacturing repeatability, uniformity, and reliability are achieved on a large‐area (8 in.) scale. The fabricated device shows a pressure sensitivity of 0.036 kPa−1 with high transparency (83%) in a pressure range up to 3 kPa. In particular, its thin thickness (45 µm) and the coplanar electrode enable to achieve excellent insensitivity to the bending with a radius of curvature of 4 mm more than 10 000 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.