Abstract
Silver nanowires (Ag NWs) have good promised for flexible and transparent electronics. However, It remains an open question on how to achieve large-scale printing of Ag NWs with high optical transparency, electrical conductivity, and mechanical durability for practical applications, though extensive research has been conducted for more than a decade. In this work, we propose a possible solution that integrates screen printing of Ag NWs with flash-light sintering (FLS). We demonstrate that the use of low-concentration, screen-printable Ag NW ink enables large-area and high-resolution patterning of Ag NWs. A critical advantage comes from the FLS process that allows low-temperature processing, short operational time, and high output rate—characteristics that fit the scalable manufacturing. Importantly, we show that the resultant Ag NW patterns feature low sheet resistance (1.1–9.2 Ohm sq−1), high transparency (75.2–92.6%), and thus a remarkable figure of merit comparable to state of the art. These outstanding properties of Ag NW patterns, together with the scalable fabrication method we propose, would facilitate many Ag NW-based applications, such as transparent heaters, stretchable displays, and wearable devices; here, we demonstrate the novel design of flexible and transparent radio frequency 5G antennas.
Highlights
With the recent interest in optically transparent electronics, transparent conductive electrodes have been extensively studied[1, 9, 16, 49, 50, 60]
We developed a custom Ag NWs ink suitable for screen printing
The prepared Ag NW ink is stable, and no settlement of Ag NWs is observed after two months at 4 °C (Fig. S2b)
Summary
With the recent interest in optically transparent electronics, transparent conductive electrodes have been extensively studied[1, 9, 16, 49, 50, 60]. Cri pt remains an open question on how to achieve large-scale printing of Ag NWs with high optical transparency, electrical conductivity, and mechanical durability for practical applications, though extensive research efforts in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.