Abstract
Monolithic 3-D (M3D) integration technology has demonstrated significant area reduction in digital systems. Recently, its applications to other fields have been considered as well. To fully investigate the potential of M3D for radio-frequency/analog-mixed signal (RF/AMS) circuits and systems, the behavior of inductors in this technology needs to be evaluated. Toward this, in this paper, the effect of M3D integration on their inductance densities and quality factors has been analyzed. The impact of shields on M3D inductors has been investigated, as well as the shunting of multiple metal layers to form multimetal inductors. In an attempt to improve the area efficiency of M3D RF/AMS circuits, the potential of placing bottom-tier blocks underneath top-tier inductors has been identified, and a set of guidelines has been proposed to maximize the inter-tier electromagnetic isolation. These guidelines deal with the suitable position of both low- and high-frequency blocks, their wiring, as well as the type of shield that is needed between them and the inductors. To prove the efficiency of these guidelines, an array of bottom-tier resistors has been placed underneath a top-tier inductor, resulting in more than 50 dB of inter-tier isolation for frequencies up to 20 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.