Abstract
Reasoning to obtain the “truth” about reality, from external data, is an important, controversial, and complicated issue in man's effort to understand nature. (Yet, today, we try to make machines do this.) There have been old useful principles, new exciting models, and intricate theories scattered in vastly different areas including philosophy of science, statistics, computer science, and psychology. We focus on inductive reasoning in correspondence with ideas of R. J. Solomonoff. While his proposals result in perfect procedures, they involve the noncomputable notion of Kolmogorov complexity. In this paper we develop the thesis that Solomonoff's method is fundamental in the sense that many other induction principles can be viewed as particular ways to obtain computable approximations to it. We demonstrate this explicitly in the cases of Gold's paradigm for inductive inference, Rissanen's minimum description length (MDL) principle, Fisher's maximum likelihood principle, and Jaynes' maximum entropy principle. We present several new theorems and derivations to this effect. We also delimit what can be learned and what cannot be learned in terms of Kolmogorov complexity, and we describe an experiment in machine learning of handwritten characters. We also give an application of Kolmogorov complexity in Valiant style learning, where we want to learn a concept probably approximately correct in feasible time and examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.