Abstract
We are working on using machine learning to make the numerical optimization of complex engineering designs faster and more reliable. We envision a system that learns from previous design sessions knowledge that enables it to assist the engineer in setting up and carrying out a new design optimization. We have performed initial experiments for two aspects of setting up an optimization: selecting a prototype to serve as a starting point for the optimization and selecting a reformulation of the search space. Both choices can dramatically affect the speed and the reliability of design optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.