Abstract

Solving engineering design and resources optimization via multiobjective evolutionary algorithms (MOEAs) has attracted much attention in the last few years. In this paper, an efficient multiobjective differential evolution algorithm is presented for engineering design. Our proposed approach adopts the orthogonal design method with quantization technique to generate the initial archive and evolutionary population. An archive (or secondary population) is employed to keep the nondominated solutions found and it is updated by a new relaxed form of Pareto dominance, called Pareto-adaptive ϵ-dominance (paϵ-dominance), at each generation. In addition, in order to guarantee to be the best performance produced, we propose a new hybrid selection mechanism to allow the archive solutions to take part in the generating process. To handle the constraints, a new constraint-handling method is employed, which does not need any parameters to be tuned for constraint handling. The proposed approach is tested on seven benchmark constrained problems to illustrate the capabilities of the algorithm in handling mathematically complex problems. Furthermore, four well-studied engineering design optimization problems are solved to illustrate the efficiency and applicability of the algorithm for multiobjective design optimization. Compared with Nondominated Sorting Genetic Algorithm II, one of the best MOEAs available at present, the results demonstrate that our approach is found to be statistically competitive. Moreover, the proposed approach is very efficient and is capable of yielding a wide spread of solutions with good coverage and convergence to true Pareto-optimal fronts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.