Abstract

Ferroelectric HfxZr1-xO2 thin films are considered promising candidates for future lead-free CMOS-compatible ferroelectric memory application. The inductive crystallization behaviors and the ferroelectric performance of Hf0.5Zr0.5O2 thin films prepared by atomic layer deposition were investigated. Inductive crystallization can be induced by the film growth condition and appropriate top electrode selection. In this work, a Ni/Hf0.5Zr0.5O2/Ru/Si stack annealed at 550°C for 30 s in N2 ambient after the Ni top electrode has been deposited was manufactured, and it shows the best ferroelectric hysteresis loop in the dielectric thickness of 25 nm, with a remanent polarization value of 6 μC/cm2 and a coercive field strength of 2.4 MV/cm measured at 10 kHz. Endurance, retention, and domain switching current characteristics were evaluated well for potential application in the field of ferroelectric field effect transistor (FeFET) and nonvolatile ferroelectric memories (FeRAM).

Highlights

  • The well-known perovskite-based ferroelectric materials, such as lead zirconate titanate (PZT) and strontium bismuth tantalate (SBT), have been widely applied to solid-state devices

  • Monoclinic phase (m-phase), which is stable at ordinary temperature, will turn to tetragonal phase (t-phase) at 2,000 K approximately, and cubic (c-phase) at 2,900 K

  • Ferroelectricity could not be found in HfO2-based materials prepared with normal methods, usually aimed at late-model high-k dielectric in research and application

Read more

Summary

Introduction

The well-known perovskite-based ferroelectric materials, such as lead zirconate titanate (PZT) and strontium bismuth tantalate (SBT), have been widely applied to solid-state devices. As a promising candidate for lower power, higher density nonvolatile memories, severe challenges should be solved before integrating such ferroelectric materials into conventional CMOS technology [1,2]. High-k materials, such as HfO2, ZrO2, Al2O3, Ta2O5, and ZnO, have received much interest as dielectrics in MOSFET structures, flash memory, RF, mixed signal ICs, and so on. HfO2 and ZrO2 have been profoundly studied and have great potential to be put into applications [3]. Ferroelectric performance in SiO2-doped HfO2 with a remanent polarization (Pr) above 10 μC/cm and a coercive field strength (Ec) of 1 MV/cm was reported [1]. Ferroelectric Hf0.5Zr0.5O2 thin films for nonvolatile memory applications were recommended [4], which showed a Pr value of 16 μC/cm and Ec of 1 MV/cm.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.