Abstract

The glycerophosphate backbone for triglyceride synthesis is commonly believed to be created through the conversion of dihydroxyacetone phosphate (DHAP) by glycerophosphate dehydrogenase (GPD) to sn-glycerol 3-phosphate (GP), which is then converted by glycerophosphate acyltransferase (GPAT) to 1-acyl-GP. Consistent with this, GPD and GPAT are highly induced during differentiation of mouse 3T3-L1 preadipocytes. While the acyl dihydroxyacetone phosphate (acyl-DHAP) pathway for glycerolipid synthesis is commonly believed to be involved only in glycerol ether lipid synthesis, we report here that during conversion of 3T3-L1 preadipocytes to adipocytes, the specific activity of peroxisomal DHAP acyltransferase (DHAPAT) is increased by 9-fold in 6 days, while acyl-DHAP:NADPH reductase is induced by 5-fold. A parallel increase in the catalase (the peroxisomal marker enzyme) activity is also seen. In contrast, the specific activity of alkyl-DHAP synthase, the enzyme catalyzing the synthesis of the ether bond, is decreased by 60% during the same period. Unlike microsomal GPAT, the induced DHAPAT is found to have high activity at pH 5.5 and is resistant to inhibition by sulfhydryl agents, heat, and proteolysis. On subcellular fractionation, DHAPAT is found to be associated with microperoxisomes whereas GPAT activity is mainly present in microsomes. Northern blot analyses reveal that induction of DHAPAT can be largely explained through increases in DHAPAT mRNA. A comparison of microsomal and peroxisomal glycerolipid synthetic pathways, using D-[3-(3)H, U-(14)C]glucose as the precursor of the lipid glycerol backbone shows that about 40-50% of triglyceride is synthesized via the acyl-DHAP pathway. These results indicate that the acyl-DHAP pathway is important not only for the synthesis of ether lipids, but also for the synthesis of triacylglycerol and other non-ether glycerolipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.