Abstract
BackgroundBRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Furthermore, elevated BRF2 can be independently prognostic of unfavorable survival. Dietary soy isoflavones increase metastasis to lungs in a model of breast cancer and a recent study reported significantly increased cell proliferation in breast cancer patients who used soy supplementation. The soy isoflavone daidzein is a major food-derived phytoestrogen that is structurally similar to estrogen. The putative estrogenic effect of soy raises concern that high consumption of soy foods by breast cancer patients may increase tumor growth.MethodsExpression of BRF2 RNA and protein was assayed in ER-positive or –negative human breast cancer cells after exposure to daidzein. We also measured mRNA stability, promoter methylation and response to the demethylating agent 5-azacytidine. In addition, expression was compared between mice fed diets enriched or deprived of isoflavones.ResultsWe demonstrate that the soy isoflavone daidzein specifically stimulates expression of BRF2 in ER-positive breast cancer cells, as well as the related factor BRF1. Induction is accompanied by increased levels of non-coding RNAs that are regulated by BRF2 and BRF1. Daidzein treatment stabilizes BRF2 and BRF1 mRNAs and selectively decreases methylation of the BRF2 promoter. Functional significance of demethylation is supported by induction of BRF2 by the methyltransferase inhibitor 5-azacytidine. None of these effects are observed in an ER-negative breast cancer line, when tested in parallel with ER-positive breast cancer cells. In vivo relevance is suggested by the significantly elevated levels of BRF2 mRNA detected in female mice fed a high-isoflavone commercial diet. In striking contrast, BRF2 and BRF1 mRNA levels are suppressed in matched male mice fed the same isoflavone-enriched diet.ConclusionsThe BRF2 gene that is implicated in cancer can be induced in human breast cancer cells by the isoflavone daidzein, through promoter demethylation and/or mRNA stabilization. Dietary isoflavones may also induce BRF2 in female mice, whereas the converse occurs in males.
Highlights
BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III
Gene-internal pol III promoters, such as those found in tRNA genes, require TFIIIB composed of TBP, BDP1 and BRF1 subunits, whereas gene-external pol III promoters, as exemplified by U6 genes, require TFIIIB containing TBP, BDP1 and BRF2 [1]
We found that 10 uM daidzein stimulates expression of the TFIIIB subunits BRF1 and BRF2 in estrogen receptors (ERs)-positive breast cancer cells, as well as pol III products U6 snRNA and tRNAiMet
Summary
BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Initiation by pol III requires TFIIIB [1], a transcription factor complex with at least two forms in mammalian cells [2, 3]. Aberrant pol III transcription is a feature of many tumor types [4]. This reflects, in part, the fact that TFIIIB is strongly regulated by pathways involving oncogenes and tumor suppressors [4, 5]. MYC [6] and the MAP kinase ERK [7] bind to TFIIIB and stimulate its activity, whereas an array of
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have