Abstract
The apple rootstock Malus prunifolia (Willd.) Borkh. is widely used for apple production. Because polyploid plants are often more tolerant to abiotic stress than diploids, we wondered whether polyploidy induction in M. prunifolia might improve its stress tolerance, particularly to high salinity. We used a combination of colchicine and dimethyl sulfoxide (DMSO) to induce chromosome doubling in M. prunifolia and identified the resulting polyploids by stomatal observations and flow cytometry. We found the best way to induce polyploidy in M. prunifolia was to use 2% DMSO and 0.05% colchicine for 2days for leaves or 0.02% colchicine for stem segments. The results of hydroponic salt treatment showed that polyploid plants were more salt tolerant and had greater photosynthetic efficiency, thicker leaf epidermis and palisade tissues, and shorter but denser root systems than diploids. During salt stress, the polyploid leaves and roots accumulated less Na+, showed upregulated expression of three salt overly sensitive (SOS) pathway genes, and produced fewer reactive oxygen species. The polyploid plants also had considerably higher ABA and jasmonic acid levels than diploid plants under salt stress. Under normal growth conditions, gibberellins (GAs) levels were much lower in polyploid leaves than in diploid leaves; however, after salt treatment, polyploid leaves showed upregulation of essential GAs synthesis genes. In summary, we developed a system for the induction of polyploidy in M. prunifolia and response to salt stress of the resulting polyploids, as reflected in leaf and root morphology, changes in Na+ accumulation, antioxidant capacity and plant hormone levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.