Abstract

Effects of hydrazine, hydrogen peroxide and bromobenzene, inducers of free radicals, and those of erythromycin and cycloheximide, inhibitors of protein synthesis on structural changes of mitochondria in primary monolayer culture of rat hepatocytes were examined using laser confocal microscope and electron microscope. After 22 h of incubation of hepatocytes with 0.2 mM hydrogen peroxide or 10 μg ml −1 of erythromycin, mitochondria became extremely enlarged. Mitochondria of hepatocytes isolated from control rats became slightly to moderately enlarged in the presence of 2 mM hydrazine, while those of hepatocytes isolated from phenobarbital-pretreated animals became extremely enlarged in the presence of 2 mM hydrazine. Cycloheximide (0.5–10.0 μg ml −1) and bromobenzene (0.1–1.0 mM) failed to induce structural changes of mitochondria. The level of cytochrome P-450 in freshly prepared hepatocytes from phenobarbital-treated rats was 2.5 times higher than that from the control rats, and remained about three times higher than the latter after 22 h of incubation with 2 mM hydrazine. The level of malondialdehyde was invariably elevated when megamitochondria were induced. These results may suggest that oxidative stress is intimately related to the mechanism of the formation of megamitochondria and that the inhibition of cytoplasmic protein synthesis seems not to contribute the phenomenon. However, the detailed mechanism by which free radicals may induce megamitochondria remains to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.