Abstract

Carbon nanotubes (CNTs) have great potential as novel diagnostic or therapeutic tools in biomedicine but, cellular toxicity must be well considered before widespread application of CNTs. Many chemical agents exert their toxicity through apoptotic pathways by induction of caspase biomolecules. In the current study, effects of carboxyl-functionalized single-walled (SW) and multi-walled (MW) CNTs at a single dose of 100 µg ml−1 on the survival of Jurkat cells were examined using MTT assay. Additionally, the impacts of carboxylated CNTs on the gene expression levels of selected caspases were investigated. Jurkat cells were exposed to CNTs (100 µg ml−1 for 72 h) and then expression levels of selected caspase genes (Cas) were evaluated by qRT-PCR analysis. Housekeeping genes, β-actin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were used as normalization controls. The results showed only a mild decrease in the viability of Jurkat cells treated with carboxylated MWCNT. The results of qRT-PCR analysis revealed the elevated level of Cas2 mRNA in the cells treated with carboxylated MWCNT (6.08-fold) and carboxylated SWCNT (1.20-fold). The expression levels of Cas4, Cas6, Cas8, and Cas10 genes were increased not significantly compared to the control untreated cells. Our findings suggested that exposure to carboxyl-functionalized CNTs could be resulted in up-regulation of the Cas2 gene and not initiator Cas8 and Cas10 genes. In addition, it seems that carboxylated MWCNT was more potent than SWCNT in activation of Cas2 gene expression and triggering cell death signal in a manner different from intrinsic or extrinsic apoptosis pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.