Abstract

The function and precise mechanism of regulation of calbindin-D 9k in intestine is largely unknown. It is suggested that this calcium binding protein is involved in active intestinal calcium transport and that its expression is mainly mediated by 1,25-dihydroxyvitamin D3. We examined the effect of two side chain modified analogs of 1,25-dihydroxyvitamin D3 as compared to 1,25-dihydroxyvitamin D3 itself on the regulation of the calbindin-D 9k at the mRNA level and on intestinal calcium transport in the rat. delta 22-24,24-dihomo-1,25-dihydroxyvitamin D3 at a single dose of 500, 1,000, and 2,000 pmol caused greater than 7.0-fold increase in calbindin-D 9k mRNA without stimulating intestinal calcium transport. A 10,000-pmol dose of delta 22-24,24,24-trihomo-1,25-dihydroxyvitamin D3 caused a 7.6-fold increase in calbindin-D 9k mRNA without significantly increasing intestinal absorption of calcium. In contrast, 1,25-dihydroxyvitamin D3 caused a parallel increase in calbindin-D 9k mRNA and intestinal absorption of calcium. Thus, calbindin 9k is not by itself responsible for 1,25-dihydroxyvitamin D3-mediated increase in intestinal absorption of calcium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call