Abstract

Although analogs and metabolites of vitamin D have been tested for their calciotropic activity, very little information has been available concerning the effects of these compounds on gene expression. In this study one analog of vitamin D, 1,25,28-trihydroxyvitamin D2 [1,25,28-(OH)3D2], and one metabolite, 1,24,25-trihydroxyvitamin D3 [1,24,25-(OH)3D3], were tested for their effect on intestinal calbindin-D9K mRNA and protein as well as for their effect on intestinal calcium absorption and bone calcium mobilization. These compounds were also evaluated for their ability to compete for rat intestinal 1,25-(OH)2D3 receptor sites and to induce differentiation of human leukemia (HL-60) cells as indicated by reduction of nitro blue tetrazolium. In vivo studies involved intrajugular injection of 12.5 ng 1,25-(OH)2D3 or test compound to vitamin D-deficient rats and sacrifice after 18 h. 1,25,28-Trihydroxyvitamin D2 had no effect on intestinal calcium absorption, bone calcium mobilization, or intestinal calbindin-D9K protein and mRNA. Competitive binding to 1,25-(OH)2D3 receptors was 0.8% of that observed using 1,25-(OH)2D3. However, 20- and 40-fold higher doses of 1,25,28-(OH)3D2 (250 and 500 ng) resulted in significant inductions in calbindin-D9K protein and mRNA (3.5 to 7.4-fold), although doses as high as 800 ng were found to have no effect on intestinal calcium absorption or bone calcium mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.