Abstract
We found dramatic changes in leukemia U937 cells treated with 5′-deoxy-5′-methylthioadenosine (MTA), a potent inhibitor of protein carboxylmethyltransferase (protein methylase II). Initiation of cell death was observed by 1 day after MTA treatment, and it was induced in a dose- and time-dependent manner. However, cell viability measured by trypan blue exclusion was not consistent with the actual percentage of cell death. These results indirectly indicated that the type of cell death is apoptosis rather than necrosis. Nuclear fragmentation and DNA condensation of MTA-treated U937 cells were analyzed by both fluorescent and electron microscopy. MTA-treated cells first began to arrest in the M phase of the cell cycle, and they then exhibited a mitotic-like nuclear fragmentation process with partially membraneless chromatin. Furthermore, agarose gel electrophoresis of DNA extracted from cells treated with MTA showed DNA laddering with production of fragments of approximately 200 bp multiples. These studies indicated that cell death induced by MTA has the characteristics of apoptosis, although nuclear fragmentation is atypical. It seems likely that the process of apoptosis in U937 cells induced by MTA correlates with incomplete assembly of the nuclear envelope, since MTA itself could inhibit the carboxylmethylation of nuclear lamin B and delayed incorporation of lamin B into the nuclear envelope.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have