Abstract

Telomeres are tandem repeats of a specific TTAGGG nucleotide sequence at the ends of chromosomes. Telomere shortening is proposed to act as a biological clock and cancer prevention mechanism by inducing a nonproliferative, senescent phenotype after a limited number of cellular divisions. Recent evidence also suggests that telomere disruption can trigger apoptosis in certain cell types, mimicking a major cellular response to DNA damage. Here, we show that addition of DNA oligonucleotides homologous to the telomere 3′ overhang sequence causes lymphocytic (Jurkat) cells to undergo apoptosis, as described for lymphocytes following telomere loop disruption. We further implicate the p53 tumor suppressor and transcription factor, as well as the p53 homolog p73 and the E2F1 transcription factor, in mediating the apoptotic response. We propose that exposure of the telomere 3′ overhang due to opening of the normal telomere loop structure is a physiologic signal for these DNA damage-like responses in vivo and that oligonucleotides partially or completely homologous to the telomere overhang mimic this signal in the absence of DNA damage or telomere disruption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.