Abstract
Telomere shortening induces a nonproliferative senescent phenotype, believed to reduce cancer risk, and telomeres are involved in a poorly understood manner in responses to DNA damage. Although telomere disruption induces p53 and triggers apoptosis or cell cycle arrest, the features of the disrupted telomere that trigger this response and the precise mechanism involved are poorly understood. Using human cells, we show that DNA oligonucleotides homologous to the telomere 3' overhang sequence specifically induce and activate p53 and activate an S phase checkpoint by modifying the Nijmegen breakage syndrome protein, known to mediate the S phase checkpoint after DNA damage. These responses are mediated, at least in part, by the ATM kinase and are not attributable to disruption of cellular telomeres. Based on these and earlier data, we propose that these oligonucleotides mimic a physiological signal, exposure of the telomere 3' overhang due to opening of the normal telomere loop structure, and hence evoke these protective antiproliferative responses in the absence of DNA damage or telomere disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.