Abstract

The interactions between genetic and environmental factors play a major role in the development of childhood asthma. We hypothesized that a pre-existing Th2/asthmatic response can promote Th2 responses to newly encountered Ags (i.e., phenotype spread). To test this hypothesis, we developed a mouse model in which the requirements for the induction and inhibition of phenotype spread to a clinically relevant neo-allergen (i.e., ragweed) were investigated. Our results indicate that 1) phenotype spread to the neo-allergen can be induced only within the first 8 h after a bronchial challenge with the first Ag (OVA); 2) Th2 differentiation of naive CD4(+) T cells occurs in bronchial lymph nodes; 3) trafficking of naive CD4(+) T cells to local lymph nodes and IL-4 produced by OVA-activated Th2 cells play essential roles in the differentiation of naive CD4(+) T cells to Th2 cells; and 4) suppression of the production of chemokines involved in the homing of naive CD4(+) T and Th2 cells to bronchial lymph nodes by a TLR9 agonist inhibited phenotype spread and abrogated the consequent development of experimental asthma. These findings provide a mechanistic insight into Th2 phenotype spread and offer an animal model for testing relevant immunomodulatory interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call