Abstract

Commercially available titanium (Ti) having high mechanical strength and a low area of cross-section can be adequately exploited for minimally invasive dental implantation. Current directions in clinical dental implant therapy focus on endosseous dental implant surfaces with nanoscale topographies using easy and economical processing approaches. The present study describes the generation of a novel nanolayer nucleating agent on the surface of Ti implant for early endosseous after implantation. The strategy is to modify the surface of Ti implant using Ca(OH)2 via hydrothermal technique (Ti-HT). The X-ray photoelectron spectroscopy analysis confirmed the presence of chemically bonded Ca ions on the Ti surface in the form of CaTiO3. In vitro studies are carried out to confirm the bone bonding ability of calcium enriched Ti surface. The apatite deposition on the surface after exposure to SBF for 7 days is confirmed via scanning electron microscopy, X-ray powder diffraction, Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy techniques. The cell viability of Ti-HT was evaluated using direct contact method and MTT assay. The potential of Ca2+ ion on Ti surface via hydrothermal pre-treatment to enhance osseointegration of Ti has been proposed for achieving early stability for dental implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.