Abstract

It is well established that gene expression in eukaryotes is controlled by sequence-dependent binding of trans-acting proteins to regulatory elements like promoters, enhancers or silencers. A less well understood level of gene regulation is governed by the various structural and functional states of chromatin, which have been ascribed to changes in covalent modification of core histone proteins. And, much on how topological domains in the genome take part in establishing and maintaining distinct gene expression patterns is still unknown. Here we present a set of regulatory proteins that allow to reversibly alter the DNA structure in vivo and in vitro by adding low molecular weight effectors that control their oligomerization and DNA binding. Using this approach, we completely regulate the activity of an SV40 enhancer in HeLa cells by reversible loop formation to topologically separate it from the promoter. This result establishes a new mechanism for DNA-structure-dependent gene regulation in vivo and provides evidence supporting the structural model of insulator function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.