Abstract

Gene expression in eukaryotes is regulated at multiple levels, which involves various cis-regulatory elements and trans-acting factors at transcriptional level. In addition, DNA methylation and histone modifications also play crucial roles in epigenetic regulation of eukaryotic genes. It is pivotal for evaluating the regulation of gene expression to understand the structural properties and spatial organization of chromatin at 3-D level. The dynamic alternations of chromatin conformation can either activate gene expression by facilitating the interactions between enhancers or other cis-regulatory elements and their target genes or suppress gene expression by blocking the interactions due to steric hindrance. Although the precise molecular mechanisms underlying the gene regulation via conformational changes of chromatin remain obscure, epigenetic studies including histone modification, nucleosome positioning, chromosome territories as well as chromatin interactions, have provided accumulating evidence to demonstrate the significance of chromatin conformation in eukaryotic gene regulation. Here, we reviewed the recent advances on the role of dynamic alterations of chromatin in gene regulation , which occur at different levels from the primary structure to three dimensional conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call