Abstract

This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded maximum degree, asserting that for all k and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of the (k×k)-wall or the line graph of a subdivision of the (k×k)-wall as an induced subgraph. We prove two theorems supporting this conjecture, as follows.1.For t≥2, a t-theta is a graph consisting of two nonadjacent vertices and three internally vertex-disjoint paths between them, each of length at least t. A t-pyramid is a graph consisting of a vertex v, a triangle B disjoint from v and three paths starting at v and vertex-disjoint otherwise, each joining v to a vertex of B, and each of length at least t. We prove that for all k,t and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a t-theta, or a t-pyramid, or the line graph of a subdivision of the (k×k)-wall as an induced subgraph. This affirmatively answers a question of Pilipczuk et al. asking whether every graph of bounded maximum degree and sufficiently large treewidth contains either a theta or a triangle as an induced subgraph (where a theta means a t-theta for some t≥2).2.A subcubic subdivided caterpillar is a tree of maximum degree at most three whose all vertices of degree three lie on a path. We prove that for every Δ and subcubic subdivided caterpillar T, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of T or the line graph of a subdivision of T as an induced subgraph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.