Abstract
AbstractA tree is even if its edges can be colored in two colors so that the monochromatic subgraphs are isomorphic. All even trees of maximum degree 3 in which no two vertices of degrees 1 or 3 are adjacent are determined. It is also shown that, for every n, there are only finitely many trees of maximum degree 3 and with n vertices of degree 3 that are not even. © 1995 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.