Abstract

The parasite Leishmania donovani is one of the species causing visceral leishmaniasis in humans, a deadly infection claiming up to 40,000 lives each year. The current drugs for leishmaniasis treatment have severe drawbacks and there is an urgent need to find new anti-leishmanial compounds. However, the search for drug candidates is complicated by the intracellular lifestyle of Leishmania. Here, we investigate the use of human induced pluripotent stem cell (iPS)-derived macrophages (iMACs) as host cells for L. donovani. iMACs obtained through embryoid body differentiation were infected with L. donovani promastigotes, and high-content imaging techniques were used to optimize the iMACs seeding density and multiplicity of infection, allowing us to reach infection rates up to 70% five days after infection. IC50 values obtained for miltefosine and amphotericin B using the infected iMACs or mouse peritoneal macrophages as host cells were comparable and in agreement with the literature, showing the potential of iMACs as an infection model for drug screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.