Abstract

Ischemic stroke is typified by hypoxia and a cascade of pathophysiological events, including metabolic dysfunction, ionic dysregulation, excitotoxicity, inflammatory infiltration, and oxidative stress. These ultimately result in neuronal apoptosis or necrosis with constrained neuroregenerative capabilities. In this study, neural stem cells (NSCs) under conditions of oxygen-glucose deprivation (OGD) in vitro and following middle cerebral artery occlusion (MCAO) in vivo were explored. Transcriptome sequencing revealed a decline in NSC differentiation and neurogenesis after OGD exposure, which was related to cellular senescence. This observation was corroborated by increased senescence markers in the MCAO mouse model, reduction in NSC numbers, and decline in neurogenesis. Importantly, iMSC-sEVs (induced mesenchymal stem cells-small extracellular vesicles) have the therapeutic potential to alleviate NSC senescence and rejuvenate their regenerative capacities both in vitro and in vivo. Moreover, iMSC-sEVs contribute to the recovery of cognitive function and synapse loss caused by MCAO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call