Abstract

Using single-walled carbon nanotubes (SWCNTs) for energy harvesting and storage have attracted much attention recently because SWCNTs have supercapacity performance. In this paper, we report a simple electromechanical approach for the generation of induced electrical potential by the compression of a SWCNT-triggered sodium deoxycholate hydrogel. This hydrogel enhances the electrical potential generated under compression, and this is mainly because of the generation of hydroelectric power by the flow of water over the SWCNTs. The induced voltage was 63.1 mV upon the compression of a 4% SWCNT hydrogel to a compression ratio of 50%, which is superior to values reported previously. The enhancement in hydroelectric potential increased with SWCNT loading in the hydrogel and with the compression ratio because of an enhancement of the impact frequency between water molecules and the SWCNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call