Abstract

Conformational selection (CS) and induced fit (IF) are two widely used interpretations of binding of a ligand to biological macromolecules. Both mechanisms envision a two-step reaction in which a conformational transition either precedes (CS) or follows (IF) the binding step. Under pseudo-first-order conditions where the ligand is in excess compared to the macromolecule, both mechanisms produce two relaxations. A fast one eventually increases linearly with ligand concentration and reflects the binding interaction. A slow one saturates to a constant value after decreasing or increasing hyperbolically with ligand concentration. This relaxation is the one most often accessible to experimental measurements and is potentially diagnostic of the mechanism involved. A relaxation that decreases unequivocally identifies CS, but a hyperbolic increase is compatible with both CS and IF. The potential ambiguity between the two mechanisms is more than qualitative. Here we show that the entire kinetic repertoire of IF is nothing but a mathematical special case of CS as revealed by a simple transformation of the rate constants, which emphasizes the need for independent support of either mechanism from additional experimental evidence. We discuss a simple strategy for distinguishing between IF and CS under the most common conditions encountered in practice, i.e., when the ligand is in excess compared to the macromolecule and a single relaxation is accessible to experimental measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.