Abstract

This study aimed to shed light on the long debate over whether conformational selection (CS) or induced fit (IF) is the governing mechanism for protein-ligand binding. The main difference between the two scenarios is whether the conformational transition of the protein from the unbound form to the bound form occurs before or after encountering the ligand. Here we introduce the IF fraction (i.e., the fraction of binding events achieved via IF), to quantify the binding mechanism. Using simulations of a model protein-ligand system, we demonstrate that both the rate of the conformational transition and the concentration of ligand molecules can affect the IF fraction. CS dominates at slow conformational transition and low ligand concentration. An increase in either quantity results in a higher IF fraction. Despite the many-body nature of the system and the involvement of multiple, disparate types of dynamics (i.e., ligand diffusion, protein conformational transition, and binding reaction), the overall binding kinetics over wide ranges of parameters can be fit to a single exponential, with the apparent rate constant exhibiting a linear dependence on ligand concentration. The present study may guide future kinetics experiments and dynamics simulations in determining the IF fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.