Abstract

Indoor tracking and navigation is a fundamental need for pervasive and context-aware smartphone applications. Although indoor maps are becoming increasingly available, there is no practical and reliable indoor map matching solution available at present. We present MapCraft, a novel, robust and responsive technique that is extremely computationally efficient (running in under 10 ms on an Android smartphone), does not require training in different sites, and tracks well even when presented with very noisy sensor data. Key to our approach is expressing the tracking problem as a conditional random field (CRF), a technique which has had great success in areas such as natural language processing. Unlike directed graphical models like Hidden Markov Models, CRFs capture arbitrary constraints that express how well observations support state transitions, given map constraints. In addition, we show how to further improve tracking accuracy, by tuning the parameters of the motion sensing model using an unsupervised EM-style optimization scheme. Extensive experiments in multiple sites show how MapCraft outperforms state-of-the art approaches, demonstrating excellent tracking error and accurate reconstruction of tortuous trajectories with zero training effort. As proof of its robustness, we also demonstrate how it is able to accurately track the position of a user from accelerometer and magnetometer measurements only (i.e., gyro- and Wi-Fi-free). We believe that such an energy-efficient approach will enable always-on background localisation, enabling a new era of location-aware applications to be developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.