Abstract

A photovoltaic/thermal (PV/T) solar collector combines solar photovoltaic (PV) modules and solar thermal that operates simultaneously to generate electricity and thermal energy. Design parameters, operating conditions and environmental factors all have a significant impact on the performance of a PV/T solar collector. This research investigates the influence of the variation in the air mass flow rate to the performance of a novel double-pass photovoltaic/thermal (PV/T) asymmetric compound parabolic concentrator (PV/T-ACPC) solar collector. To investigate performance of the solar collector, it was tested indoors using a solar simulator at average solar radiation of 800 W/m2 with the variation in the air mass flow rate ranging from 0.0074 kg/s to 0.0900 kg/s. From the analysis, we found that as the air mass flow rate increases, the thermal efficiency and electrical efficiency increases from 37.15 % to 60.51 %, and 2.51 % to 3.29 % respectively. Meanwhile while the difference in the air output temperature and PV panel temperature were found to decrease from 19.64 °C to 2.63 °C, and 66.83 °C to 41.86 °C respectively. We also found that, as the mass flow rate continues to increase, it will reach its ‘optimum point’ and approaching a plateau at mass flow rate of 0.0262 kg/s. The finding is crucial since the collector needs to be operated at its optimum flow rate to ensure optimum efficiencies at the optimum temperature rise of the useful air supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.