Abstract

Particulate preparations from growing regions of 8-day old Pisum sativum epicotyls catalysed glucosyl transfer to β-glucan from UDPglucose and GDP-glucose. The activities assayed with GDPglucose (6 or 600 μM) or low (6μM) concentrations of UDPglucose disappeared from decapitated epicotyls within 3 days, but were maintained when the cut apex was treated with the hormone indoleacetic acid. These activities re-appeared when indoleacetic acid was added 3 days after decapotation; cycloheximide prevented this response. The activity assayed with high (600 μM) concentrations of UDPglucose, in contrast, remained in the decapitated epicotyl unaffected by indoleacetic acid or cycloheximide during incubation periods of upt to 5 days. In competition experiments with the two substrates, the individual synthetase activities were not additive, and part of the activity with one substrate was still detectable in the presence of a large excess of the other. These observations indicate the existence in pea particles of at least 4 glucan synthetase activities which differ in substrate affinities, stability and developmental responses to treatments that affect growth and protein synthesis. Such treatments alo markedly influence the deposition of cellulose, e.g. indoleacetic acid caused an 8-fold increase in cellulose laid down in a 3-day period. It is suggested that indoleacetic acid-regulated synthetase activities account for the extra cellulose evoked by indoleacetic acid during sustained growth, and a different non-regulated synthetase activity is responsible for a basal rate of cellulose deposition which proceeds in the presence or absence of indoleacetic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.