Abstract

SATB2-associated syndrome (SAS) is a multisystemic disorder characterized by developmental delay often with concurrent autistic tendencies. This study aimed to characterize cellular metabolic pathways and energy metabolism from cells derived from individuals with SAS. The cellular production of NADH (nicotinamide adenine dinucleotide, reduced form) as determined by the Phenotype Mammalian MicroArrays was measured in lymphoblastoid cell lines derived from 11 subjects with a molecularly confirmed diagnosis of SAS and compared to a control population of 50 age-matched typically developing individuals. All patients were evaluated clinically by a multidisciplinary team. Eleven individuals (five in a screening cohort and six in the validation cohort, mean age 6.1 years) were recruited to the study. All individuals had developmental delay and the diagnosis of autism was previously established in five of them. Key metabolic findings included reduced NADH production in the presence of phosphorylated carbohydrates (with corresponding increased production in the presence of alternative carbon-based energy sources), increased response to certain hormones (β-estradiol in particular), and significantly reduced levels of NADH in wells containing tryptophan. The individual analysis revealed no particular differences among the SAS subjects based on molecular findings or phenotypic features. In conclusion, individuals with SAS have a common and recognizable metabolic profile. A lower capacity to utilize glucose as an energy substrate could be contributing to the neurodevelopment phenotype of SAS. The identified abnormalities offer previously unexplored insight into the potential pathophysiology of common SAS phenotypic features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.