Abstract

The development and study of hepatitis C virus (HCV) vaccine candidates' individualized responses are of great importance. Here we report on an HCV DNA vaccine candidate based on selected envelope (E1/E2) epitopes. Besides, we assessed its expression and processing in human peripheral blood mononuclear cells (PBMCs) and in vivo cellular response in mice. HCV E1/E2 DNA construct (EC) was designed. The antigen expression of EC was assayed in PBMCs of five HCV-uninfected donors via a real-time quantitative polymerase chain reaction. Serum samples from 20 HCV antibody-positive patients were used to detect each individual PBMCs expressed antigens via enzyme-linked immunosorbent assay. Two groups, five Swiss albino mice each, were immunized with the EC or a control construct. The absolute count of lymph nodes' CD4+ and CD8+ T-lymphocytes was assessed. Donors' PBMCs showed different levels of EC expression, ranging between 0.83-2.61-fold in four donors, while donor-3 showed 34.53-fold expression. The antigens expressed in PBMCs were significantly reactive to the 20 HCV antibody repertoire (all p=0.0001). All showed comparable reactivity except for donor-3 showing the lowest reactivity level. The absolute count % of the CD4+ T-cell significantly increased in four of the five EC-immunized mice compared to the control group (p=0.03). No significant difference in CD8+ T-cells % was observed (p=0.89). The inter-individual variation in antigen expression and processing dominance was evident, showing independence in individuals' antigen expression and reactivity levels to antibodies. The described vaccine candidate might result in a promising natural immune response with a possibility of CD4+ T-cell early priming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.