Abstract

Although aspects of an individual’s state are well-known to influence the expression of behavior, it is still unclear how elements of state affect consistent among-individual differences in behavior. With binary, irreversible elements of state, such as mating status, there may be optimal behavioral phenotypes before and after mating, with individuals often prioritizing mate acquisition before and resource acquisition after. Yet, limited plasticity may prevent optimal behavior in both contexts. Additionally, it remains largely unknown if some consistencies in neural or physiological traits may limit the ability of the organism to respond to state changes. In this study, we investigated how changes in a binary state variable, mating status, affected both the mean expression and among-individual variation in behavior and web structure of the redback spider, Latrodectus hasselti. Furthermore, we explored the role of biogenic amines in potentially mediating individual differences in behavior and web structure. We found that mated females were overall more aggressive than virgin females and also built webs structured primarily for capturing prey rather than safety. We also found that individual differences in behavior and web structure were maintained across mating statuses, which indicates the stability of these traits and may drive personality-specific state-dependent fitness trade-offs. Finally, we found that aggressive spiders had higher central nervous system dopamine levels. Interestingly, web structure was often correlated with a catabolite of tyramine (N-acetyltyramine), suggesting that variation in amine catabolism, and not the concentrations of the amines themselves, may drive individual differences in some traits. Our results demonstrate that although individuals show plasticity in response to changes in state, specifically mating status, individuals also maintain among-individual differences across this state change. Thus, aggressive individuals before mating will tend to be aggressive after. This maintenance of individual differences across state may drive differential fitness benefits before and after mating for different behavioral phenotypes. Furthermore, we show that biogenic amines and their catabolites are related to individual differences, thus identifying a potential mechanism underlying consistent variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call