Abstract

Pitching the individual blades of a horizontal-axis wind turbine allows control of asymmetric aerodynamic loads, which in turn influences structural loads in the nonrotating frame such as tower side-side bending. These loads are not easily controlled by traditional collective pitch algorithms. This paper presents the design of individual pitch control systems for implementation on the Controls Advanced Research Turbine (CART) in Colorado to verify controller performance for load attenuation. The control designs are based on linear time-periodic state-space models of the turbine and use optimal control methods for gain calculation. Comparisons are made between new individual pitch, new collective pitch, and baseline controller performance in both above rated and below rated wind conditions. Results from simulations show the potential of individual pitch to reduce tower side-side fatigue damage in above rated wind speeds (by 70% compared to baseline control) but with no improvement over collective pitch in below rated wind speeds. Fatigue load reductions in tower fore-aft, shaft torsion, and blade flap are also observed. From 13h of field testing, both collective and individual pitch controllers achieve a reduction in fatigue damage. However, the superior performance of individual pitch control observed in simulation was not verified by the field test results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.