Abstract
Exposure to pesticides, individually or in a mixture, in drinking water is one of the main sources of human contamination, which causes adverse effects on the reproductive system. Our study aimed to investigate, the effects of a 90-day exposure to low concentrations of glyphosate (GLY), atrazine (ATZ), and 2,4-dichlorophenoxyacetic acid (2,4-D), in commercial formulations, on morphological, molecular, and hormonal parameters of the ventral prostate of gerbils (Meriones unguiculatus). The animals were exposed via drinking water to individual concentrations of GLY: 700 μg/L, ATZ: 3 μg/L, and 2,4-D: 70 μg/L, as well as to their mixture (MIX). Our findings showed an increase in prostatic complex relative weight in ATZ-exposed animals. Stereological and morphometric techniques indicated an increase in the percentage and thickness of muscular stroma, following an increase in the amount of collagen and reticular fibers in the MIX group. Histopathological analysis showed a decrease in the incidence of epithelial atrophy, subepithelial inflammation, and microacini in the MIX. On the other hand, ATZ-exposed animals showed an increase in hyperplasia and total prostatic intraepithelial neoplasia (PIN). The expression of caspase-3 decreased and estrogen receptor alpha (ERα) increased in the 2,4-D and MIX. Western blotting showed an increase in estrogen receptor beta (ERβ) expression in MIX-exposed animals. Testosterone levels decreased in animals from the GLY, ATZ and 2,4-D groups. Our findings provide evidence that individual or combined exposure to herbicides causes hormonal imbalance and morphological alterations, besides favoring the incidence of proliferative lesions in the prostate, predisposing the gland to more severe injuries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.