Abstract

This study investigated the green synthesis of silver nanoparticles (Ag-NPs) and zinc oxide nanoparticles (ZnO-NPs) using an aqueous extract of stingless bee honey (SBH) as a reducing and stabilising agent. The rich compositions of SBH containing flavonoids, phenolics, organic acids, sugars, and enzymes makes the SBH extract an ideal biocompatible precursor for the NPs synthesis. Physicochemical characterisation of the synthesised NPs was performed using UV-Vis spectroscopy, FESEM, TEM, XRD, and FTIR spectroscopy. The results revealed that the Ag-NPs and ZnO-NPs exhibited polydispersity, with size ranges between 25-50nm and 15-30nm, respectively. A majority of the NPs possessed a spherical morphology. Furthermore, the study evaluated the antimicrobial activity of the SBH-based NPs against gram-positive (Staphylococcus aureus, ATCC 43300) and gram-negative (Escherichia coli, ATCC 25922) bacteria. The findings demonstrated significantly higher antimicrobial efficacy of the Ag-NPs with a zone of inhibition (ZOI) of 16.91mm against S. aureus, and 17.43mm against E. coli compared to the ZnO-NPs which having a ZOI of 13.05mm and 14.01mm, respectively. Notably, cytotoxicity assays revealed no adverse effects of the synthesised NPs on normal mouse fibroblast (3T3) and human lung fibroblast (MRC5) cells up to 100μg/ml of concentration. These findings suggest the potential of SBH-based Ag-NPs and ZnO-NPs as safe and effective antibacterial agents for various applications, including pharmaceuticals, cosmetics, ointments, and lotions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.