Abstract

The use of indium tin oxide (ITO) thin films as electrodes for integrated optical electrochemical sensor devices is discussed. The effect of various thicknesses of ITO overlayers exhibiting low resistivity and high transparency on potassium ion-exchanged waveguides fabricated in glass substrates is investigated over the wavelength range 500-900 nm. ITO overlayers are formed by reactive thermal evaporation in oxygen, followed by annealing in air to a maximum temperature of 320 degrees C. With air as the superstrate, losses in the waveguides were found to increase dramatically above 30-nm ITO thickness for TE polarization and above 50-nm thickness for TM. Losses were increased over the whole wavelength range for a superstrate index close to that of water. A one-dimensional, multilayer waveguide model is used in the interpretation of the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call