Abstract
The effect of indium (In) substitution in the dynamics of structure and ferrimagnetism of yttrium iron garnet (YIG) employing sintering temperature as a temporary agent of composition and structural changes was reported in this study. The nanoparticles of YIG powder samples with various In content (x=0.0–0.4) were prepared via the mechanical alloying (MA) technique. A brief, yet revealing characterization of the samples was carried out via transmission electron microscope, X-ray diffraction, Raman spectroscopy, B–H Hysteresisgraph, and LCR-metre. The X-ray diffraction analysis of the samples prepared via the MA indicates the formation of single phase YIG structure at much lower sintering temperature than that in the conventional ceramic technique. The lattice constant increases as In content increases which obeys Vegard's Law due to the larger In3+ ions replacing the smaller Fe3+ ions. The saturation induction increased reaching about 699.1G for x=0.3 and decreased with further In substitution. Three stages of ordered magnetism formation were identified which attributed to development of crystallinity and larger grains for magnetic domain accommodation. The Curie temperature shows a decrement in their values with In content due to weakening of superexchange interactions. Raman shifts from 268.1 to 272.2cm−1 with increasing In content were observed due to stress developed in the YIG crystal structure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have