Abstract

Developing industrial-grade electroreduction of CO2 to produce formate (HCOO-)/formic acid (HCOOH) depends on highly active electrocatalysts. However, structural changes due to the inevitable self-reduction of catalysts result in severe long-term stability issues at industrial-grade current density. Herein, linear cyanamide anion ([NCN]2-)-constructed indium cyanamide nanoparticles (InNCN) were investigated for CO2 reduction to HCOO- with a Faradaic efficiency of up to 96% under a partial current density (jformate) of 250 mA cm-2. Bulk electrolysis at a jformate of 400 mA cm-2 requires only -0.72 VRHE applied potential with iR correction. It also achieves continuous production of pure HCOOH at ∼125 mA cm-2 for 160 h. The excellent activity and stability of InNCN are attributed to its unique structural features, including strongly σ-donating [NCN]2- ligands, the potential structural transformation of [N═C═N]2- and [N≡C-N]2-, and the open framework structure. This study affirms metal cyanamides as promising novel materials for electrocatalytic CO2 reduction, broadening the variety of CO2 reduction catalysts and the understanding of structure-activity relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.