Abstract
It is claimed that the indispensability argument for the existence of mathematical entities (IA) works in a way that allows a proponent of mathematical realism to remain agnostic with regard to how we establish that mathematical entities exist. This is supposed to be possible by virtue of the appeal to confirmational holism that enters into the formulation of IA. Holism about confirmation is supposed to be motivated in analogy with holism about falsification. I present an account of how holism about falsification is supposed to be motivated. I argue that the argument for holism about falsification is in tension with how we think about confirmation and with two principles suggested by Quine for construing a plausible variety of holism. Finally, I show that one of Quine’s principles does not allow a proponent of mathematical realism to remain agnostic with regard to how we establish that mathematical entities exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.