Abstract

Findings in newborn mouse brainstem slices led to the hypothesis that depression of breathing by opioids is caused by postsynaptic K(+) channel-mediated hyperpolarization of rhythmogenic inspiratory neurons of the pre-Bötzinger complex (preBötC). Subsequent observations in newborn en bloc medullas and juvenile rats in vivo indicated that excitatory drive from retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) neurons partly counters opioid-evoked inspiratory inhibition. Our recent study in newborn rat en bloc medullas supports the latter hypothesis, whereas we found in that report that inspiratory preBötC neurons constituting the interface with the RTN/pFRG are not hyperpolarized by opioids. Here, we show that opioids also do not hyperpolarize preBötC neurons in "calibrated" newborn rat slices. This supports the previous hypothesis by us and others that opioids rather target inspiratory networks indirectly, likely primarily via presynaptic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.